首页 > 留学知识库

问题: 复变函数论

指出下列函数在零点Z=0的级.
(1)Z2(ez2-1), (2)6sinZ3+Z3(Z6-6).

解答:

(1)

(z^2)[e^(z^2)-1]
=(z^2){[1+(z^2)+(z^4)/2!+(z^6)/3!+……+(z^2n)/n!+……]-1}
=z^4+(z^6)/2!+(z^8)/3!+……+[z^(2n+2)]/n!+……
所以函数在z=0是4级零点.


(2)

6sin(z^3)+(z^3)(z^6-6)
=6[z^3-(z^9)/3!+(z^15)/5!-(z^21)/7!+……]+[z^9-6z^3)
=6(z^15)/5!-6(z^21)/7!+……+6[(-1)^n][z^(6n+3)]/(2n+1)!+……
所以函数在z=0是15级零点.