问题: 三角形ABC不是直角三角形,c为最大边,试猜想a^2+b^2与c^2的关系,并说明理由
在三角形ABC中,BC=a,AC=b,AB=c,若三角形ABC不是直角三角形,c为最大边,试猜想a^2+b^2与c^2的关系,并说明理由
解答:
在三角形ABC中,BC=a,AC=b,AB=c,若三角形ABC不是直角三角形,c为最大边,试猜想a^2+b^2与c^2的关系,并说明理由
因为△ABC中,c为最大边,那么∠C就是最大角
即,∠C>∠B≥∠A
所以,∠A+∠B+∠C<∠C+∠C+∠C=3∠C
又,在三角形ABC中,∠A+∠B+∠C=180°
所以:3∠C>180°
即:60°<∠C<180°,且∠C≠90°……………………(1)
而,在△ABC中,根据余弦定理有:
c^2=a^2+b^2-2abcosC………………………………………(2)
所以,由(1)知,当60°<∠C<90°时,cosC>0
那么,由(2)知道:
c^2<a^2+b^2
当90°<∠C<180°时,cosC<0
那么,由(2)知道:
c^2>a^2+b^2
综上:
当c为最大边时:
1)若△ABC为锐角三角形,那么就有:c^2<a^2+b^2
2)若△ABC为钝角三角形,那么就有:c^2>a^2+b^2
版权及免责声明
1、欢迎转载本网原创文章,转载敬请注明出处:侨谊留学(www.goesnet.org);
2、本网转载媒体稿件旨在传播更多有益信息,并不代表同意该观点,本网不承担稿件侵权行为的连带责任;
3、在本网博客/论坛发表言论者,文责自负。