问题: 复变函数
2.试证:任何有界的复数列必有一个收敛的子数列。
解答:
使用实数的性质:任何有界的实数列必有一个收敛的子数列。
1.
设有界的复数列{z(n)=a(n)+ib(n)}n∈N,
|a(n)|≤|z(n)|≤M==>
{a(n)}n∈N为有界的实数列,则必有一个收敛的子数列
{a(u(k))}k∈N,且Lim{k→∞}a(u(k))=a。
|b(u(k))|≤|z((u(k))|≤M==>
{b(u(k))}k∈N为有界的实数列,则必有一个收敛的子数列
{b(u(v(s)))}s∈N,且Lim{s→∞}b(u(v(s)))=b。
2.
{z(u(v(s)))=a(u(v(s)))+ib(u(v(s)))}s∈N
为{z(n)=a(n)+ib(n)}n∈N的子列,且
Lim{s→∞}z(u(v(s)))=a+ib.
版权及免责声明
1、欢迎转载本网原创文章,转载敬请注明出处:侨谊留学(www.goesnet.org);
2、本网转载媒体稿件旨在传播更多有益信息,并不代表同意该观点,本网不承担稿件侵权行为的连带责任;
3、在本网博客/论坛发表言论者,文责自负。