首页 > 留学知识库

问题: f(x)

已知f(x)=sin(wx+π/3)(w>0),f(π/6)=f(π/3),且f(x)在区间(π/6,π/3)有最小值,无最大值,则w=

解答:

已知f(x)=sin(wx+π/3)(w>0),f(π/6)=f(π/3),且f(x)在区间(π/6,π/3)有最小值,无最大值,则w=

f(π/6)=f(π/3),且f(x)在区间(π/6,π/3)有最小值
--->x=(π/6+π/3)/2=π/4时f(x)取得最小值
  且:T=2π/w>π/3-π/6=π/6--->0<w<12
--->w(π/4)+π/3=2kπ-π/2--->w=8k-10/3--->k=1--->w=14/3