首页 > 留学知识库

问题: 高三数学题

已知函数f(x)=4sin2(π/4 +x)-2√3cos2x-1,且给定条件p:x<π/4或x>π/2,x∈R.
⑴在非p的条件下,求f(x)的最值;
⑵若条件q:-2<f(x)-m<2且非p是q的充分条件,求实数m的取值范围。

解答:

f(x)=4sin²(π/4 +x)-2√3cos2x-1
=-2[1-2sin²(π/4 +x)]-2√3cos2x+1
= -2cos(π/2 +2x)-2√3cos2x+1
=2sin2x-2√3cos2x+1
=4sin(2x -π/3)+1

1)非p的条件下 ,x∈[π/4 ,π/2]
则2x∈[π/2 ,π]
2x-π/3∈[π/6 ,2π/3]
f(x)最小值=3
f(x)最大值=5

2)条件q
f(x)-m 
 =4sin(2x -π/3)+1-m∈(-2,2)
则,4sin(2x -π/3)+1∈(m-2,m+2)

非p的条件下2x-π/3∈[π/6 ,2π/3]
4sin(2x -π/3)+1∈[3,5]
非p是q的充分条件
==>m>5或m<3
显然4sin(2x -π/3)+1∈(m-2,m+2)
m>5 ==〉m∈(5,7]
m<3==>m∈[-3,3)
===>实数m的取值范围m∈[-3,3)∪(5,7]