首页 > 留学知识库

问题: 请教一道数学题

设f(x)=(sin2x+cos2x)/(tanx+1/tanx)
1 求f(x)的最小正周期
2 求f(x)的值域

解答:

设f(x)=(sin2x+cos2x)/(tanx+1/tanx)
1 求f(x)的最小正周期
2 求f(x)的值域
解:f(x)=(sin2x+cos2x)/(tanx+1/tanx)
=(sin2x+cos2x)/[(sinx/cosx)+(cosx/sinx)]
= (sin2x+cos2x)/{[(sinx)^2+(cosx)^2]/sinxcosx}
= (sin2x+cos2x)/(1/sinxcosx)
= (sin2x+cos2x)/(2/2sinxcosx)
= (sin2x+cos2x)/(2/sin2x)
= sin2x(sin2x+cos2x)/2
= (1/2)[(sin2x)^2+(sin2xcos2x)]
= (1/4)[2(sin2x)^2+2(sin2xcos2x)]
= (1/4)[1-cos4x+sin4x]
= (1/4)[1-√2sin(4x-π/4)]
∴f(x)的最小正周期 T=2π/4=π/2
f(x)的值域[(1-√2)/4,(1+√2)/4],