问题: 高中不等式
设x,y,z是互不相等的实数,且x+y+z>0.求证:
x^3/[(x-y)(x-z)]+y^3/[(y-z)(y-x)]+z^3/[(z-x)(z-y)]>0
解答:
设x,y,z是互不相等的实数,且x+y+z>0.求证:
x^3/[(x-y)(x-z)]+y^3/[(y-z)(y-x)]+z^3/[(z-x)(z-y)]>0
x^3/[(x-y)(x-z)]+y^3/[(y-z)(y-x)]+z^3/[(z-x)(z-y)]
=[x^3*(y-z)+y^3*(z-x)+z^3*(x-y)]/[(x-y)(y-z)(x-z)]
=x+y+z>0
版权及免责声明
1、欢迎转载本网原创文章,转载敬请注明出处:侨谊留学(www.goesnet.org);
2、本网转载媒体稿件旨在传播更多有益信息,并不代表同意该观点,本网不承担稿件侵权行为的连带责任;
3、在本网博客/论坛发表言论者,文责自负。