首页 > 留学知识库

问题: 数学考试题

设等差数列(an)的公差和等比数列(bn)的公比都是d,且a1=b1,a4=b4,a10=b10,求(1)a1,d(2)判断是否存在一项an使an=b16,若存在求出n,若不存在,说明理由

解答:

设等差数列{an}的公差和等比数列{bn}的公比都是d,且a1=b1,a4=b4,a10=b10,求(1)a1,d(2)判断是否存在一项an使an=b16,若存在求出n,若不存在,说明理由

(1) 令:a1=b1=a
a4=b4----->a+3d=a•d³
a10=b10--->a+9d=a•d^9
--->a = 3d/(d³-1)=9d/(d^9-1)
--->d^9-3d³+2=0--->(d³-1)²(d³+2)=0--->d³=-2(d³=1舍去)
--->d = -³√2----->a1=a=-d = ³√2

(2) b16 = (-d)•d^15 = -d^16
令:an = a+(n-1)d = (n-2)d = -d^16
--->n = 2-d^15 = 2-(-2)^5 = 34