问题: f(x)=pai/2-2arcsin(2x 1),f-1(-pai/2)=?
解答:
f-1(-π/2)=?
解:
由:y=f(x)=π/2-2arcsin(2x+1)
有:arcsin(2x+1)=(π/4)-y/2
sin[arcsin(2x+1)]=sin[(π/4)-y/2]
2x+1=sin[(π/4)-y/2]
x=(1/2){sin[(π/4)-y/2]-1}
既:f-1(x)=(1/2){sin[(π/4)-y/2]-1}
所以:
f-1(-π/2)
=(1/2){sin[(π/4)+(π/4)]-1}
=(1/2)(-1)
=-1/2
版权及免责声明
1、欢迎转载本网原创文章,转载敬请注明出处:侨谊留学(www.goesnet.org);
2、本网转载媒体稿件旨在传播更多有益信息,并不代表同意该观点,本网不承担稿件侵权行为的连带责任;
3、在本网博客/论坛发表言论者,文责自负。