问题: 求函数y=cos^2(x-pai/12) sin^2(x pai/12)-1周期.奇偶性
解答:
y=cos^2(x-π/12)+sin^2(x+π/12)-1
=cos^2(x-π/12)+sin^2(x+π/12)-[sin^2(x+π/12)+cos^2(x+π/12)]
=cos^2(x-π/12)-cos^2(x+π/12)
=[cos(x-π/12)-cos(x+π/12)][cos(x-π/12)+cos(x+π/12)]
=[sinxsin(π/12)][cosxcos(π/12)]
=(sinxcosx)[sin(π/12)cos(π/12)]
=(1/4)sin2xsin(π/6)
=(1/8)sin2x
所以:T=2π/2=π,是奇函数。
版权及免责声明
1、欢迎转载本网原创文章,转载敬请注明出处:侨谊留学(www.goesnet.org);
2、本网转载媒体稿件旨在传播更多有益信息,并不代表同意该观点,本网不承担稿件侵权行为的连带责任;
3、在本网博客/论坛发表言论者,文责自负。