问题: 证明x^3-3x+1=0在区间(0,1)中有根
谢谢啊
解答:
已经证明出他是单调减少的,然后又f(0)=1,f(1)=0,所以在(0,1)区间内,只有一个数x使得f(x)=0。如果不是单调的,那只能得出在该区间存在解,但不一定唯一,单调性保证了解的唯一性。
证明:设f(x)=x^3-3x+1,知f(x)在(0,1) 连续,又 f(0)=1,f(1)=-1,因此在(0,1)内必存在一个x0,使得f(x0)=0。又f'(x)<0,因此在(0,x0)中对应的函数值都f(x)>f(x0),在[x0,1)中的函数值f(x)<f(x0),因此有且只有x0,使得f(x0)=0.证明了唯一性
版权及免责声明
1、欢迎转载本网原创文章,转载敬请注明出处:侨谊留学(www.goesnet.org);
2、本网转载媒体稿件旨在传播更多有益信息,并不代表同意该观点,本网不承担稿件侵权行为的连带责任;
3、在本网博客/论坛发表言论者,文责自负。