首页 > 留学知识库

问题: 已知向量a=(根3SINX,COSX,),向量b=(COSX,COSX),记F(X)=向量a*b

已知向量a=(根3SINX,COSX,),向量b=(COSX,COSX),记F(X)=向量a.b的数量积.若X属于[-π/6,π 3]时,函数G(X)=F(X)+M的最小值为2,,并指出X取何值时,函数G(X)取得最大值

解答:

F(x)=ab
=√3 sinxcosx+cosxcosx
=[(√3)/2]sin2x +(1/2)(cos2x +1)
=[(√3)/2]sin2x +(1/2)cos2x +1/2
=sin(2x +π/6)+1/2
G(x)=sin(2x +π/6)+1/2+M
x∈[-π/6,π/3]
2x∈[-π/3,2π/3]
2x+π/6∈[-π/6,5π/6]

2x+π/6 =-π/6 函数G(X)的最小值-1/2 +1/2+M ==>M=2
2x+π/6 =π/2 函数G(X)取得最大值1+1/2+M =7/2
此时 ,x =π/6