问题: (a-b/a+b)+(b-c/b+c)+(c-a/c+a)+[(a-b)(b-c)(c-a)/(a+
(a-b/a+b)+(b-c/b+c)+(c-a/c+a)+[(a-b)(b-c)(c-a)/(a+b)(b+c)(c +a)}=?
解答:
(a-b)/(a+b)+(b-c)/(b+c)+(c-a)/(c+a)+(a-b)(b-c)(c-a)/[(a+b)(b+c)(c+a)]=?
令:x=a+b,y=b+c,z=a+c
--->a-b=z-y,b-c=x-z,c-a=y-x
原式= (z-y)/x+(x-z)/y + (y-x)/z+(z-y)(x-z)(y-x)/(xyz)
= (yz-y²+x²-zx)/(xy) + (y-x)[xy+(z-y)(x-z)]/(xyz)
= (x-y)(x+y-z)/(xy) - (x-y)[xy+(zx-z²-xy+yz)]/(xyz)
= (x-y)(zx+yz-z²)/(xyz) - (x-y)(zx-z²+yz)/(xyz)
= 0
版权及免责声明
1、欢迎转载本网原创文章,转载敬请注明出处:侨谊留学(www.goesnet.org);
2、本网转载媒体稿件旨在传播更多有益信息,并不代表同意该观点,本网不承担稿件侵权行为的连带责任;
3、在本网博客/论坛发表言论者,文责自负。