首页 > 留学知识库

问题: 极限3333333333333

极限

解答:

等比数列{bn=a(n+1)-an/10}中
b1=a2-a1/10=1/4, q=1/2----------->bn=a(n+1)-an/10=1/2^(n+1)
等差数列{cn=lg[a(n+1)-an/2]}中
c1=lg[a2-a1/2]=-2,d=-1--->cn=-n-1--->a(n+1)-an/2=1/10^(n+1)
以上两式相减:(1/2-1/10)an = 1/2^(n+1)-1/10^(n+1)
--->an = (5/2)[1/2^(n+1)-1/10^(n+1)]
--->lim<n→∞>Sn = (5/2)[(1/4)/(1-1/2)-(1/100)/(1-1/10)]
         = (5/2)[1/2-1/90]
         = 11/9