问题: 分布积分法 7、11
(7) ∫x^2lnx dx
(8) ∫xcos^2(x) dx
(9) ∫x^2arctanx dx
解答:
(7) ∫x^2lnx dx= (1/3)∫lnx d(x^3)
=(1/3)[(x^3)lnx-∫x^2 dx]
=(1/9)[(x^3)(3lnx-1)+C.
(8) ∫x*cos^2(x) dx =∫x[1+cos(2x)]/2 dx
=(x^2)/4+(1/4)∫xdsin(2x)
=(x^2)/4+(1/4)[x*sin(2x)-∫sin(2x)dx]
=(x^2)/4+(1/4)[x*sin(2x)+(1/2)cos(2x)]+C.
=[2(x^2)+2x*sin(2x)+cos(2x)]/8+C.
(9) ∫x^2arctanx dx=(1/3)∫arctanx d(x^3)
=(1/3)[(x^3)*arctanx -∫x^3/(1+x^2)dx]
=(1/3)[(x^3)*arctanx -(1/2)∫[1-1/(1+x^2)d(x^2)]
=[2(x^3)*arctanx -x^2+ln(1+x^2)]/6+C.
版权及免责声明
1、欢迎转载本网原创文章,转载敬请注明出处:侨谊留学(www.goesnet.org);
2、本网转载媒体稿件旨在传播更多有益信息,并不代表同意该观点,本网不承担稿件侵权行为的连带责任;
3、在本网博客/论坛发表言论者,文责自负。