问题: 已知过A(0,1)
已知过A(0,1),且斜率为k的直线l与圆C:(x-2)2+(y-3)2=1相交于M,N两点,若o为坐标原点,且向量om*on=12,求k的值
解答:
解:设:M(x1,y1),N(x2,y2),直线L是:y=kx+1。并代入圆c得:
(x-2)^2+(kx+1-3)^2=1
==>x^2(k^2+1)-x(4k+4)+7=0
==>【x1+x2=(4k+4)/(k^2+1),x1x2=7/(k^2+1)】--------(1)
向量om*on=12
==>|om||on|cosa
==>√(x1^2+y1^2)*√(x2^2+y2^2)*(x1x2+y1y2)/[√(x1^2+y1^2)√(x2^2+y2^2)]
==>x1x2+y1y2=12
==>x1x2+(kx1+1)(kx2+1)=12
==>x1x2(k^2+1)+k(x1+x2)-11=0
==>4k^2+4k=4k^2+4【代入(1)得】
==>k=1
版权及免责声明
1、欢迎转载本网原创文章,转载敬请注明出处:侨谊留学(www.goesnet.org);
2、本网转载媒体稿件旨在传播更多有益信息,并不代表同意该观点,本网不承担稿件侵权行为的连带责任;
3、在本网博客/论坛发表言论者,文责自负。