首页 > 留学知识库

问题: 数学,椭圆

已知椭圆C:x^2/a^2+y^2/b^2=1,其相应于焦点F(2,0)的准线方程为x=4.
(1)求椭圆C的方程
(2)已知过点F1(-2,0)倾斜角为Q的直线交椭圆于
A、B两点,求证:/AB/=(4倍根号2)/(2-cos^2Q)
(3)过点F1(-2,0)作两条互相垂直的直线分别交椭圆C于点A、B和D、E。求/AB/+/DE/的最小值。

解答:

已知椭圆C:x^2/a^2+y^2/b^2=1,其相应于焦点F(2,0)的准线方程为x=4.
(1)求椭圆C的方程
因为焦点F(2,0)在x轴上,则:a>b>0
c=2
又,对应准线为x=a^2/c=4
所以:a^2=4c=8
而,c^2=a^2-b^2
则,b^2=a^2-c^2=8-4=4
所以,椭圆方程为:x^2/8+y^2/4=1

(2)已知过点F1(-2,0)倾斜角为Q的直线交椭圆于A、B两点,求证:/AB/=(4倍根号2)/(2-cos^2Q)
过点F1(-2,0),倾斜角为θ的直线方程为:y=tanθ*(x+2)
它与椭圆x^2+2y^2-8=0的两个交点为A、B
设A(x1,tanθ*(x1+2))、B(x2,tanθ*(x2+2))
则,x^2+2[tanθ*(x+2)]^2-8=0
===> x^2+2tan^2θ*(x^2+4x+4)-8=0
===> (2tan^2θ+1)x^2+8tan^2θx+8(tan^2θ-1)=0
所以:
x1+x2=-8tan^2θ/(2tan^2θ+1)
x1x2=8(tan^2θ-1)/(2tan^2θ+1)
y1-y2=tanθ(x1+2)-tanθ(x2+2)=tanθ(x1-x2)
则,|AB|=√[(x1-x2)^2+(y1-y2)^2]
=√[(x1-x2)^2+tan^2θ(x1-x2)^2]
=√[(1+tan^2θ)(x1-x2)^2]
=√{(1+tan^2θ)[(x1+x2)^2-4x1x2]}
=√sec^2θ{[-8tan^2θ/(2tan^2θ+1)]^2-32(tan^2θ-1)/(2tan^2θ+1)}
=√sec^2θ{[64tan^4θ-32(tan^2θ-1)(2tan^2θ+1)]/(2tan^2θ+1)^2}
=√sec^2θ{[64tan^4θ-64tan^4θ+32tan^2θ+32]/(2tan^2θ+1)^2}
=√[32sec^4θ/(2tan^2θ+1)^2]
=4√2*[sec^2θ/(2tan^2θ+1)]
=4√2*[1/(2sin^2θ+cos^2θ)]
=4√2*/[(2(1-cos^2θ)+cos^2θ]
=4√2/(2-cos^2θ)

(3)过点F1(-2,0)作两条互相垂直的直线分别交椭圆C于点A、B和D、E。求/AB/+/DE/的最小值。
设直线AB的倾斜角为θ,那么与AB垂直的直线CD的倾斜角为(90°+θ)
那么,由(2)的结论知:
AB=4√2/(2-cos^2θ)
CD=4√2/[2-cos^2(90°+θ)]=4√2/(2-sin^2θ)=4√2/(1+cos^2θ)
所以:|AB|+|CD|=[4√2/(2-cos^2θ)]+[4√2/(1+cos^2θ)]
=4√2*[1/(2-cos^2θ)+1/(1+cos^2θ)]
=4√2*[3/(-cos^4θ+cos^2θ+2)]
=12√2/[-(cos^2θ-1/2)^2+(9/4)]
所以,当cos^2θ=1/2时,[-(cos^2θ-1/2)^2+(9/4)]有最大值9/4
则,|AB|+|CD|就有最小值=12√2/(9/4)=(16/3)√2