首页 > 留学知识库

问题: 求取值范围

设x,y,z∈R+,求使下式:
8∏(t*x+y+z)/∏(y+z)≥(2+t)^3
成立的取值范围.

解答:

设x,y,z∈R+,求使下式:
8∏(t*x+y+z)/∏(y+z)≥(2+t)^3
成立的取值范围.

将所给式子化为三角形的s,R,r.即
∏(t*x+y+z)=s{t^3*r^2+2r(2R-r)t^2+(s^2-4Rr+r^2)t+4Rr};
∏(y+z)=4sRr.

Rr(2+t)^3≥2[t^3*r^2+2r(2R-r)t^2+(s^2-4Rr+r^2)t+4Rr]
<==>
t{-r(R-2r)t^2+2r(R-2r)t+2(s^2-14Rr+r^2)}≥0
<==>
t{2s^2-(28-2t+t^2)Rr+(1-4t+2t^2)}≥0 (1)
∴t≥0,
2s^2-(28-2t+t^2)Rr+(1-4t+2t^2)≥0 (2)
欲使(2)成立,则
32≥28-2t+t^2 (3)
(3)<==>
t^2-2t-4≥0
解得:1-√5≤t,或t≤1+√5
而t≥0.∴0≤t≤1+√5.