问题: 因式分解
因式分解
(yz^4+zx^4+xy^4)-(zy^4+xz^4+yx^4)
解答:
(yz^4+zx^4+xy^4)-(zy^4+xz^4+yx^4)
=yz(z^3-y^3)+zx(x^3-z^3)+xy(y^3-x^3)
=yz(z-y)(z^2+yz+y^2)+zx(x-z)(x^2+zx+z^2)+xy(y-x)(y^2+xy+x^2)
=yz(z-y)(z^2+yz+y^2)+zx(x-y)(x^2+zx+z^2)+zx(y-z)(x^2+zx+z^2)+xy(y-x)(y^2+xy+x^2)
=z(z-y)[y(z^2+yz+y^2)-x(x^2+zx+z^2)]+x(y-x)[y(y^2+xy+x^2)-z(x^2+zx+z^2)
=z(z-y)(y-x)[z^2+z(y+x)+y^2+xy+x^2]-x(y-x)*(z-y)[x^2+x(y+z)+y^2+yz+z^2]
=(z-y)(y-x)(z-x)[z^2+zx+x^2+yz+x(y+z)+y^2-zx]
=(z-y)(y-x)(z-x)[x^2+y^2+z^2+yz+xy+zx]
版权及免责声明
1、欢迎转载本网原创文章,转载敬请注明出处:侨谊留学(www.goesnet.org);
2、本网转载媒体稿件旨在传播更多有益信息,并不代表同意该观点,本网不承担稿件侵权行为的连带责任;
3、在本网博客/论坛发表言论者,文责自负。