首页 > 留学知识库

问题: 高一数学在线等,谢谢,半小时后作废...

若3sin²α+2sin²β=2sinα,则cos²α+cos²β的取值范围是???

解答:

若3sin^2α+2sin^2β=2sinα,则cos^2α+cos^2β的取值范围是???

由3sin^2α+2sin^2β=2sinα得到:
sin^2β=sinα-(3/2)sin^2α
而,cos^2α+cos^2β=(1-sin^2α)+(1-sin^2β)
=2-sin^2α-sin^2β
=2-sin^2α-sinα+(3/2)sin^2α
=(1/2)sin^2α-sinα+2
=(1/2)[sin^2α-2sinα+1]+(3/2)
=(1/2)[sinα-1]^2+(3/2)
因为:sinα∈[-1,1]。则:
===> sinα-1∈[-2,0]
===> [sinα-1]^2∈[0,4]
===> (1/2)[sinα-1]^2∈[0,2]
===> (1/2)[sinα-1]^2+(3/2)∈[3/2,7/2]
即:cos^2α+cos^2β∈[3/2,7/2]