问题: 高二数学不等式
已知:a^2+b^2+c^2=1,求证:ax+by+cz≤1
解答:
因为(a^2)+(b^2)+(c^2)=1,(x^2)+(y^2)+(z^2)=1
(a^2)+(b^2)+(c^2)+(x^2)+(y^2)+(z^2)-2(ax+by+cz)
=(a-x)^2+(b-y)^2+(c-z)^2>=0
将已知条件带入(a^2)+(b^2)+(c^2)=1,(x^2)+(y^2)+(z^2)=1
2-2(ax+by+cz)>=0
所以ax+by+cz<=1
版权及免责声明
1、欢迎转载本网原创文章,转载敬请注明出处:侨谊留学(www.goesnet.org);
2、本网转载媒体稿件旨在传播更多有益信息,并不代表同意该观点,本网不承担稿件侵权行为的连带责任;
3、在本网博客/论坛发表言论者,文责自负。