首页 > 留学知识库

问题: 若实数a,b满足ab-4a-b+1=0(a>1),则(a+1)(b+2)的最小值为多少

若实数a,b满足ab-4a-b+1=0(a>1),则(a+1)(b+2)的最小值为多少

解答:

用基本不等式也可:
ab-4a-b+1=0
显然b≠4,
a=(b-1)/(b-4)=1+3/(b-4)>1,b>4

(a+1)(b+2)
=ab+2a+b+2
=(ab-4a-b+1)+(6a+2b+1)
=6a+2b+1
=6+18/(b-4)+2b+1
=18/(b-4)+2(b-4)+15
>=2√[18/(b-4)*2(b-4)]+15
=27
当18/(b-4)=2(b-4),b=7;a=1+3/(b-4)=2时取等号

所以,(a+1)(b+2)的最小值为27