问题: 高一数学
若函数f(x)=sin^2ax-sinaxcosax(a>0)的图像与直线y=m(m为常数)相切,并且切点的横坐标依次成公差为π/2的等差数列。求m的值。
解答:
解:依题意得:
f(x)=(sinax)^2-sinaxcosax
=(1-cos2ax)/2 - sin2ax/2
=1/2-(cos2ax+sin2ax)/2
=1/2-√2(√2/2*cos2ax+√2/2*sin2ax)/2
=1/2-√2sin(π/4+2ax)
∵函数f(x)的图像与直线y=m(m为常数)相切
∴直线y=m必定经过函数f(x)图像的最高点或最低点
而函数f(x)与直线y=m的切点的横坐标依次成公差为π/2的等差数列,即f(x)的周期T=π/2
所以(2π)/(2a)=π/2
解得a=2
∴f(x)=1/2-√2sin(π/4+4x)
当sin(π/4+4x)=1时
f(x)取得最小值1/2-√2
此时y=m=1/2-√2
当sin(π/4+4x)=-1时
f(x)取得最大值1/2+√2
此时y=m=1/2+√2
综上所述:m=1/2±√2
版权及免责声明
1、欢迎转载本网原创文章,转载敬请注明出处:侨谊留学(www.goesnet.org);
2、本网转载媒体稿件旨在传播更多有益信息,并不代表同意该观点,本网不承担稿件侵权行为的连带责任;
3、在本网博客/论坛发表言论者,文责自负。