首页 > 留学知识库

问题: 求tanA+tanB最小值,快!50分!

三角形ABC,
C=5PAI/9 ,求tanA+tanB最小值

解答:

tanA+tanB =sinA/cosA +sinB/cosB
=(sinAcosB+cosAsinB)/cosAcosB
=sin(A+B)/cosAcosB
=2sin(A+B)/[cos(A+B)+cos(A-B)] .....(1)

C =5π/9 ==>A+B=4π/9

(1) =2sin(4π/9)/[cos(4π/9)+cos(A-B)]

变量只有分母中的cos(A-B) ,cos(A-B)越大,分式值越小
A,B都是锐角,则cos(A-B)]最大为1
tanA+tanB最小值
2sin(4π/9)/[cos(4π/9)+1]
=2tan(2π/9)