问题: abc是正数,且和是一,求根号(3A 1) 根号(3B 1) 根号(3C 1)的最大值
很急
解答:
预备知识:n个正数的算术平均数不小于它们的平方平均数。n=3的情况,就是:
(x+y+z)/3=<√[(x^2+y^2+z^2)/3].当仅当x=y=z时等号成立。
证明:[√(2a+1)+√(3b+1)+√(3c+1)]/3
=<√{[(3a+1)+3b+1)+(3c+1)]/3}
=<√{[3(a+b+c)+3]/3}=√(6/3)=√2
去分母得到:√(3a+1)+√(3b+1)+√(3c+1)=<3√2
当且仅当a=b=c=1/3,因此√(3a+1)=√(3b+1)=√(3c+1)=√2时,等号成立。
所以,原式的最大值是3√2。
版权及免责声明
1、欢迎转载本网原创文章,转载敬请注明出处:侨谊留学(www.goesnet.org);
2、本网转载媒体稿件旨在传播更多有益信息,并不代表同意该观点,本网不承担稿件侵权行为的连带责任;
3、在本网博客/论坛发表言论者,文责自负。