问题: 二倍角求值
sin[(π/4)-θ]=5/13
求1.θ∈(0,45)
2.[cos2θ]/[cos(45+θ)]=?
解答:
∵sin(π/4-θ)=5/13
∴cos(π/4-θ)=12/13
∵cos(π/4+θ)=cos(-π/4-θ)=sin(π/4-θ)
cos2θ=cos(-2θ)=sin(π/2-2θ)=sin[2(π/4-θ)]
=2sin(π/4-θ)cos(π/4-θ)
∴cos2θ/cos(π/4+θ)=2sin(π/4-θ)cos(π/4-θ)/sin(π/4-θ)
=2cos(π/4-θ)=2*12/13=24/13
版权及免责声明
1、欢迎转载本网原创文章,转载敬请注明出处:侨谊留学(www.goesnet.org);
2、本网转载媒体稿件旨在传播更多有益信息,并不代表同意该观点,本网不承担稿件侵权行为的连带责任;
3、在本网博客/论坛发表言论者,文责自负。