首页 > 留学知识库

问题: 急求,高一数学,在线等

函数f(x)=根号(x^2-2x-8),g(x)=1/(1-|x-a|)的定义域分别为A,B,且A∩B=空集,求a的取值范围.
(x^2-2x-8)整个都在根号里哦,希望高手给出祥解,谢谢

解答:

楼主小可爱:请勿撤销问题,对错可由投票解决.




f(x)=√[(x+2)(x-4)]定义域A={x≤-2}∪{x≥4},
g(x)=1/(1-|x-a|)的定义域B={x≠a+1}∩{x≠a-1}.

无论a为什么值,设b=min(-2,a-1),c=max(4,a+1),
所以A∩B={x<b}∪{x>c}不可能是空集.