问题: 初中等腰三角形
试证明有两条角平分线相等的三角形是等腰三角形。
解答:
这就是著名的斯坦纳--莱默斯定理。
己知 在△ABC中,BE,CF是∠B,∠C的平分线,BE=CF。
求证:AB=AC.
证明 设AB≠AC,不妨设AB>AC,这样∠ACB>∠ABC,
从而∠BCF=∠FCE=∠ACB/2>∠ABC/2=∠CBE=∠EBF。
在△BCF和△CBE中,因为BC=BC, BE=CF,∠BCF>∠CBE.
所以 BF>CE。 (1)
作平行四边形BEGF,则∠EBF=∠FGC,EG=BF,FG=BE=CF,连CG,
故△FCG为等腰三角形,所以∠FCG=∠FGC。
因为∠FCE>∠FGE,所以∠ECG<∠EGC。
故得 CE>EG=BF. (2)
显然(1)与(2)是矛盾的,故假设AB≠AC不成立,于是必有AB=AC。
版权及免责声明
1、欢迎转载本网原创文章,转载敬请注明出处:侨谊留学(www.goesnet.org);
2、本网转载媒体稿件旨在传播更多有益信息,并不代表同意该观点,本网不承担稿件侵权行为的连带责任;
3、在本网博客/论坛发表言论者,文责自负。