问题: 高一
谢谢
解答:
tanA+tanB+tanC=tanA*tanB*tanC>0
所以tanA,tanB,tanC中有0个或者2个负数,
若有两个则有两个钝角,矛盾,所以全是锐角
其中非直角△中成立:
tanA+tanB+tanC=tanA*tanB*tanC
证明如下:
∵tan(A+B)=tanA+tanB/1-tanA*tanB
tan(A+B)=tan(π-C)=-tanC
∴tanA+tanB/1-tanA*tanB=-tanC
整理移项即得.
所以选择B O(∩_∩)O~
版权及免责声明
1、欢迎转载本网原创文章,转载敬请注明出处:侨谊留学(www.goesnet.org);
2、本网转载媒体稿件旨在传播更多有益信息,并不代表同意该观点,本网不承担稿件侵权行为的连带责任;
3、在本网博客/论坛发表言论者,文责自负。