首页 > 留学知识库

问题: 高二不等式问题

若0<y≤x<π/2,且tanx=3tany,求证:x≤π/6 +y.

解答:

若0<y≤x<π/2,且tanx=3tany,求证:x≤π/6 +y
证明:∵tan(x-y)=(tanx-tany)/(1+tanx*tany)
=(3tany-tany)/[1+3(tany)^2]
=2tany/[1+3(tany)^2]
=2/(1/tany+3tany)(∵1/tany+3tany ≥2√3)
∴≤√3/3
∴tan(x-y)≤√3/3(∵x-y∈[0,π/2))
∴ x-y≤ π/6,即x≤π/6 +y