问题: 高二不等式问题
若0<y≤x<π/2,且tanx=3tany,求证:x≤π/6 +y.
解答:
若0<y≤x<π/2,且tanx=3tany,求证:x≤π/6 +y
证明:∵tan(x-y)=(tanx-tany)/(1+tanx*tany)
=(3tany-tany)/[1+3(tany)^2]
=2tany/[1+3(tany)^2]
=2/(1/tany+3tany)(∵1/tany+3tany ≥2√3)
∴≤√3/3
∴tan(x-y)≤√3/3(∵x-y∈[0,π/2))
∴ x-y≤ π/6,即x≤π/6 +y
版权及免责声明
1、欢迎转载本网原创文章,转载敬请注明出处:侨谊留学(www.goesnet.org);
2、本网转载媒体稿件旨在传播更多有益信息,并不代表同意该观点,本网不承担稿件侵权行为的连带责任;
3、在本网博客/论坛发表言论者,文责自负。