问题: 若(2x+1)^4=a0x^4+a1x^3+a2x^2+a3x^+a4
则(1)a0+a1+a2+a3+a4的值为?
(2)a0+a2+a4的值?
解答:
(2x + 1)^4
= [4x^2 + (4x + 1)]^2
= 16x^4 + (4x + 1)^2 + 8x^2(4x + 1)
= 16x^4 + 32x^3 + 8x^2 + 16x^2 + 8x + 1
= 16x^4 + 32x^3 + 24x^2 + 8x + 1
a0 = 16
a1 = 32
a2 = 24
a3 = 8
a4 = 1
a0 + a1 + a2 + a3 + a4 = 91
a0 + a2 + a4 = 41
版权及免责声明
1、欢迎转载本网原创文章,转载敬请注明出处:侨谊留学(www.goesnet.org);
2、本网转载媒体稿件旨在传播更多有益信息,并不代表同意该观点,本网不承担稿件侵权行为的连带责任;
3、在本网博客/论坛发表言论者,文责自负。