首页 > 留学知识库

问题: 高二不等式

已知a,b∈正实数,求证:(a+b)*(a的n次方+b的n次方)≤2(a的[n+1]次方+b的[n+1]次方) (n∈正实数)。

解答:

已知a,b∈正实数,求证:(a+b)*(a^n+b^n)≤2(a^[n+1]+b^[n+1]) (n∈正实数)。
证明:作差法
(a+b)*(a^n+b^n)-2(a^[n+1]+b^[n+1])
= a^[n+1]+ab^n+a^nb+b^[n+1]-2(a^[n+1]+b^[n+1])
=ab^n+a^nb-(a^[n+1]+b^[n+1])
=a^nb-a^[n+1]+ab^n-b^[n+1]
=a^n(b-a)+b^n(a-b)
=a^n(b-a)-b^n(b-a)
=(a^n-b^n)(b-a)
=-(a^n-b^n)(a-b)
∵a^n-b^n与a-b总是同时≥0或≤0
∴a^n-b^n)(a-b)≥0
∴-(a^n-b^n)(a-b)≤0
∴(a+b)*(a^n+b^n)-2(a^[n+1]+b^[n+1])≤0
∴(a+b)*(a^n+b^n)≤2(a^[n+1]+b^[^[n+1])