问题: 高一数学 急!
已知集合A={x|x^2-4mx+2m+6=0},B={x|x<0}若A∩B≠空集,求实数m的取值范围
解答:
m取值范围为m<=-1
设f(x)=x^2-4mx+2m+6,若A∩B=空集,则f(x)图像对称轴x=2m>0且f(0)>=0,综合解得m>0,所以要A∩B≠空集,首先要m<=0.又根据方程有解,得16m^2-4(2m+6)>=0,解得m<=-1或m>=3/2.综合之前m<=0,得到结果为m<=-1.
版权及免责声明
1、欢迎转载本网原创文章,转载敬请注明出处:侨谊留学(www.goesnet.org);
2、本网转载媒体稿件旨在传播更多有益信息,并不代表同意该观点,本网不承担稿件侵权行为的连带责任;
3、在本网博客/论坛发表言论者,文责自负。