问题: 计算:(1+1/1*3)*(1+1/2*4)*(1+1/3*5)*(1+1/4*6)*…*(1+
1/97*99)*(1+1/98*100)=?
解答:
计算:(1+1/1*3)*(1+1/2*4)*(1+1/3*5)*(1+1/4*6)*…*(1+1/97*99)*(1+1/98*100)=?
每一个括号内的通项为:1+[1/n(n+2)]=[n(n+2)+1]/[n(n+2)]
=[n^2+2n+1]/[n(n+2)]
=(n+1)^2/[n(n+2)]
=[(n+1)/n]*[(n+1)/(n+2)]
所以:原式
=[(2/1)*(2/3)]*[(3/2)*(3/4)]*[(4/3)*(4/5)]*……*[(98/97)*(98/99)]*[(99/98)*(99/100)]
=2*(99/100)(从第二项起,相邻两项直接约分)
=99/55
版权及免责声明
1、欢迎转载本网原创文章,转载敬请注明出处:侨谊留学(www.goesnet.org);
2、本网转载媒体稿件旨在传播更多有益信息,并不代表同意该观点,本网不承担稿件侵权行为的连带责任;
3、在本网博客/论坛发表言论者,文责自负。