问题: 数学题
已知:如图,∠BAC=90°,AB=AC,M是AC边的中点,AD⊥BM,垂足为E,且交BC于点D.求证:∠AMB=∠CMD
解答:
等腰直角三角形ABC,AB=AC,角BAC=90度M为边AC的中点BM垂直AD交BC于D,垂足为E连接DM,求证角AMB=角DMC
证明:
过C点做CF⊥AC,交AD延长线于点F
∴∠ACF=90度
∵∠BAC=90度
∴AB‖CF
∴∠BAE=∠F
∵∠BAC=90度
∴∠BAE+∠MAE=90度
∵BM⊥AD
∴∠AMB+∠MAE=90度
∴∠BAE=∠AMB
∴∠AMB=∠F
在三角形ABM和三角形AFC中
∵AB=AC,∠ACF=∠BAC=90度,∠AMB=∠F
∴三角形ABM全等于三角形AFC(AAS)
∴AM=CF
∵AM=CM
∴CM=CF
在三角形CMD和三角形CFD中
∵∠ACB=∠FCD=45度(因为三角形ABC是等腰直角三角形,所以角ACB=45度,所以角DCF=90-45=45度),CM=CF,CD=CD
∴三角形CMD全等于三角形CFD(SAS)
∴∠F=∠DMC
又∵∠F=∠AMB
∴∠AMB=∠DMC
版权及免责声明
1、欢迎转载本网原创文章,转载敬请注明出处:侨谊留学(www.goesnet.org);
2、本网转载媒体稿件旨在传播更多有益信息,并不代表同意该观点,本网不承担稿件侵权行为的连带责任;
3、在本网博客/论坛发表言论者,文责自负。