首页 > 留学知识库

问题: 高一数学题

f(x)在(0,正无穷大)上为单调递减,f(xy)=f(x)+f(y),f(1/3)=1,
求(1),f(1)=?
(2),当f(x)+f(2-x)<2,求x的范围

解答:

x=y=1
===>
f(1*1)=f(1)+f(1)
f(1)=0

f(1/3)=1
f(1/3 *1/3)=f(1/3)+f(1/3)=2
f(1/9)=2

f(x)+f(2-x)=f(2x-x^2)<2
f(x)在(0,正无穷大)上为单调递减
==>2x-x^2>1/9
且x>0,2-x>0
===>
1 -(2/3)√2 <x<1 +(2/3)√2