首页 > 留学知识库

问题: 高一三角函数,速答!~

1、若3(sinα)^2+2(sinβ)^2=2sinα,则(cosα)^2+(cosβ)^2的取值范围是
2、(sin10)^2+(cos40)^2+sin25cos25=
3、[1/(cos80)^2-3/(cos10)^2]*(1/cos20)=

解答:

解:1.因为3(sinα)^2+2(sinβ)^2=2sinα
所以,3[1-(cosα)^2]+2[1-(cosβ)^2]=2sinα,
即3-2(cosα)^2+2-2(cosβ)^2=2sinα+(cosα)^2,
2(cosα)^2+2(cosβ)^2=(sinα)^2-2sinα+4
所以,(cosα)^2+(cosβ)^2=(1/2)(sinα)^2-sinα+2=(1/2)(sinα-1)^2+3/2
因为,-1≤sinα≤1,所以2≤(1/2)(sinα-1)^2+3/2≤7/2,
即2≤(cosα)^2+(cosβ)^2≤7/2.
2.(sin10)^2+(cos40)^2+sin25cos25
=(1/2)(1-cos20+1+cos80+sin50)
=(1/2)(2-2sin30sin50+sin50)
=(1/2)(2-sin50+sin50)
=1.
3.[1/(cos80)^2-3/(cos10)^2]*(1/cos20)
=[2/(1+cos160)-6/(1+cos20)]*(1/cos20)
=[2/(1-cos20)-6/(1+cos20)]*(1/cos20)
={(2+2cos20-6+6cos20)/[1-(cos20)^2]}*(1/cos20)
=(8cos20-4)/[cos20(sin20)^2]
=16(cos20-cos60)/(sin40sin20)
=32sin20sin40/(sin20sin40)
=32.