问题: 高1数学题1
0<β<派/4
派/4<α<3派/4
且cos(派/4-α)=4/5
sin(3派/4+β)=5/13
求cosα,cos(α+β)
解答:
解
cos(π/4-α)=cos(α-π/4)=4/5
sin(π/4-α)=-3/5,
sin(α-π/4)=3/5 (因π/4<α<3π/4)
sin(3π/4+β)=sin[π-(π/4-β)]=sin(π/4-β)
即sin(π/4-β)=5/13
cos(3π/4+β)=-12/13,
cos(π/4-β)=12/13 (因0<β<π/4)
所以
cosα
=cos[(α-π/4)+π/4]
=cos(α-π/4)cos(π/4)-sin(α-π/4)sin(π/4)
=(4/5)(√2/2)-(3/5)(√2/2)
=√2/10
cos(α+β)
=-sin[π/2+(α+β)]
=-sin[(3π/4+β)-(π/4-α)]
=-sin(3π/4+β)cos(π/4-α)+cos(3π/4+β)sin(π/4-α)]
=-(5/13)(4/5)+(-12/13)(-3/5)
=16/65
另外3月30日的题应是这样:
sin(α+β)
=cos[π/2+(α+β)]
=cos[(3π/4+β)-(π/4-α)]
=cos(3π/4+β)cos(π/4-α)+sin(3π/4+β)sin(π/4-α)
=(-12/13)(3/5)+(5/13)(-4/5)
=-56/65
版权及免责声明
1、欢迎转载本网原创文章,转载敬请注明出处:侨谊留学(www.goesnet.org);
2、本网转载媒体稿件旨在传播更多有益信息,并不代表同意该观点,本网不承担稿件侵权行为的连带责任;
3、在本网博客/论坛发表言论者,文责自负。