首页 > 留学知识库

问题: 求取值范围

已知实数x,y满足x^3+y^3=128求x+y的取值范围。

解答:

(x+y)^2 ≥4xy
x+y≥0时:
128 = x^3+y^3 = (x+y)^3 -3xy(x+y)
≥(x+y)^3 -3[(1/4)(x+y)^2](x+y) =(1/4)(x+y)^3
==> 0<x+y ≤8
x+y≤0时:
128 = x^3+y^3 = (x+y)^3 -3xy(x+y)
≤(x+y)^3 -3[(1/4)(x+y)^2](x+y) =(1/4)(x+y)^3
==> x+y ≥8,与x+y≤0矛盾
因此,x+y的取值范围为:0< x+y ≤8