首页 > 留学知识库

问题: 急切等待!!!!!

{an}是等比数列,且a2>a3=1,使不等式(a1-1/a1)+(a2+1/a2)+……+(an-1/an)>0成立的正整数n的最大值是多少?

解答:

{an} = {a*q^(n-1)}, {1/an} = {(1/a)/q^(n-1)}
a2>a3=1 ==> aq>a*q^2 =1 ==> a>0, 1>q>0
0 > (a1-1/a1)+(a2+1/a2)+……+(an-1/an)
=(a1+a2+...+an)-(1/a1 -1/a2 -...-1/an)
=a*(1 -q^n)/(1-q) -(1/a)(1 -1/q^n)/(1 -1/q)
={(1/a^2)*q(1 -q^n)/[(1-q)*q^n)]}*[a^2*q*(n-1)]
{(1/a^2)*q(1 -q^n)/[(1-q)*q^n)]} > 0
==> 0 < a^2*q*(n-1) = (a3)^2 *q^(n-5) =q^(n-5)
==> n-5 < 0
==> 最大的正整数n =4