问题: 数列
数列 1-n,2(n-1),3(n-2)…n-1的和为
解答:
1*n, 2(n-1), 3(n-2), …, n*1 的和 S 为:_________________
首先有公式: 1^2 + 2^2 + 3^2 + ... + n^2 = n(n+1)(2n+1)/6
通项公式: k[n-(k-1)] = k * (n+1) - k^2. (k=1,2,3,...,n)
所以 1 * (n-0) = 1 * (n+1) - 1^2
2 * (n-1) = 2 * (n+1) - 2^2
3 * (n-2) = 3 * (n+1) - 3^2
...........................
n * (n-n) = n * (n+1) - n^2
以上n个式子相加得:
S = (1 + 2 + 3 + ... + n) * (n+1) - (1^2 + 2^2 + 3^2 +...+ n^2)
= n(n+1)(n+1)/2 - n(n+1)(2n+1)/6
= n(n+1)/6 * (3n+3-2n-1)
= n(n+1)/6 * (n+2)
= n(n+1)(n+2)/6
版权及免责声明
1、欢迎转载本网原创文章,转载敬请注明出处:侨谊留学(www.goesnet.org);
2、本网转载媒体稿件旨在传播更多有益信息,并不代表同意该观点,本网不承担稿件侵权行为的连带责任;
3、在本网博客/论坛发表言论者,文责自负。