首页 > 留学知识库

问题: 高中函数

设f(x)=ax^2+bx,且1<=f(-1)<=2,2<=f(1)<=4,求f(-2)的取值范围。

解答:

设f(x)=ax^2+bx,且1<=f(-1)<=2,2<=f(1)<=4,求f(-2)的取值范围

f(-1) = a - b , f(1) = a + b , f(-2) = 4a - 2b

易得 4a - 2b = 3(a - b) + (a + b)
即 f(-2) = 3f(-1) + f(1)
因为 1<=f(-1)<=2, 2<=f(1)<=4
所以 3<=3f(-1)<=6, 2<=f(1)<=4
所以 5 <= 2f(-1)+f(1) <= 10
即 5 <= f(-2) <= 10