问题: 高中函数
设f(x)=ax^2+bx,且1<=f(-1)<=2,2<=f(1)<=4,求f(-2)的取值范围。
解答:
设f(x)=ax^2+bx,且1<=f(-1)<=2,2<=f(1)<=4,求f(-2)的取值范围
f(-1) = a - b , f(1) = a + b , f(-2) = 4a - 2b
易得 4a - 2b = 3(a - b) + (a + b)
即 f(-2) = 3f(-1) + f(1)
因为 1<=f(-1)<=2, 2<=f(1)<=4
所以 3<=3f(-1)<=6, 2<=f(1)<=4
所以 5 <= 2f(-1)+f(1) <= 10
即 5 <= f(-2) <= 10
版权及免责声明
1、欢迎转载本网原创文章,转载敬请注明出处:侨谊留学(www.goesnet.org);
2、本网转载媒体稿件旨在传播更多有益信息,并不代表同意该观点,本网不承担稿件侵权行为的连带责任;
3、在本网博客/论坛发表言论者,文责自负。