问题: 求下列极限。
(1)lim x→0 4x^3-2x^2+x/3x^2+2x
(2)lim x→1 (1/1-x - 3/1-x^3)
(3)lim n→∞ 1+2+3+……+(n-1)/n^2
解答:
解:(1)<x→0>lim[(4x^3-2x^2+x)/(3x^2+2x)]
````````````=lim[(4x^2-2x+1)/(3x+2)]
````````````=lim[(0-0+1)/(0+2)]
````````````=1/2
(2)<x→1>lim[1/(1-x)-3(1-x^3)]
````````=lim[((x^2+x+1)-3)/(1-x^3)]
````````=lim[(x^2+x-2)/(1-x)(1+x+x^2)]
````````=lim[(x+2)(x-1)/(1-x)(1+x+x^2)]
````````=lim[-(x+2)/(1+x+x^2)]
````````=lim[-(1+2)/(1+1+1)]
````````=-1
(3)<n→∞>lim{[1+2+3+……+(n-1)]/n^2}
`````````=lim{[n(n-1)/2]/n^2}
`````````=lim[(n-1)/2n]
`````````=1/2
版权及免责声明
1、欢迎转载本网原创文章,转载敬请注明出处:侨谊留学(www.goesnet.org);
2、本网转载媒体稿件旨在传播更多有益信息,并不代表同意该观点,本网不承担稿件侵权行为的连带责任;
3、在本网博客/论坛发表言论者,文责自负。