首页 > 留学知识库

问题: 求极限(三)

lim{1/a(a+d)+1/(a+d)(a+2d)+……+1/[a+(n-1)d][a+nd]}
a,d为不等于零的常数。n趋于无穷大

解答:

因为 1/(a+(k-1)d)*(a+kd)=1/d×[1/(a+(k-1)d)-1/(a+kd)],所以,

1/a(a+d)+1/(a+d)(a+2d)+……+1/[a+(n-1)d][a+nd]

=1/d×[1/a-1/(a+d)+1/(a+d)-1/(a+2d)+......+1/(a+(n-1)d)-1/(a+nkd)]

=1/d×[1/a-1/(a+nd)]

→1/ad (n→∞)

所以,极限是1/ad