首页 > 留学知识库

问题: 请教高一数学题

已知;tga=xsinb/1-xcosb,tgb=ysina/1-ycosa且b≠k∏,xy≠0,则sina/sinb等于 (答案x/y)


已知 sina=Asin(a+b) (a+b≠k∏,k∈Z)
求证 tg(a+b)=sinb/cosb-A

解答:

(1)tga/tgb=sina*cosb/(cosa*sinb)=xsinb*(1-ycosa)/[ysina*(1-xcosb)]
化简得:ysina~2*cosb-xsinb~2cosa=xy(sina~2cosb~2-sinb~2cosa~2)
=xy[(1-cosa~2)*cosb~2-sinb~2cosa~2]=0
则得sina*sina*cosb/(sinb*sinb*cosa)=sina/sinb*tga/tgb=x/y①
把tga/tgb代入上式,得(1-ycosa)/(1-xcosb)=1,即cosa/coab=x/y再代入①
得sina~2/sinb~2=x~2/y~2
所以sina/sinb=x/y
(2)A=sina/sin(a+b)代入sinb/(cosb-A)=sinb/[cosb-sina/sin(a+b)]
=sin(a+b)*sinb/[sin(a+b)cosb-sina]
=sin(s+b)*sinb/[1/2*sin(a+2b)+1/2*sina=sina]
=sin(s+b)*sinb/[1/2*sin(a+2b)-1/2*sina]
=sin(a+b)*sinb/[cos(a+b)*sinb]
=tg(a+b)=等式左边
所以原等式成立