问题: 高一数学题求解
1、y=2+4cosa-4sin∧2 (π/2≤x≤π)的值域是?
2、sin2x=cos(7/10)π 求x
3, 设0<β<π/4 <α<(3/4)π
cos(π/4-α)=3/5 sin[(3/4)π+β]=5/13
求sin(α+β)
4, cosx=-12/13 x∈(π,2π) 求x
解答:
(1) y=2+4cosx-4(sinx)^2
=2+4cosx-4[1-(cosx)^2]
=4(cosx)^2+4cosx+1-3
=(2cosx+1)^2-3
(cosx+1)^2在π/2≤x≤2π/3内是递减,所以
当x=π/2时,有极大值。
ymax=-2
当x=2π/3时,有极小值
ymin=-3
(cosx+1)^2在2π/3≤x≤π内是递增,所以
当x=π时,有极大值。
ymax=-2
当x=2π/3时,有极小值
ymin=-3
综上:y的值域为[-3,-2]
(2)sin2x=cos(7π/10)
=sin(-3π/10)
2x=2kπ-3π/10或2x=2kπ-7π/10 (k为整数)
所以x=kπ-3π/20或x=kπ-7π/20 (k为整数)
(3)
因为0<β<π/4 <α<3π/4所以-π/2<π/4-α<0,3π/4<3π/4+β<π/2
cos(π/4-α)=3/5 ,sin(3π/4+β)=5/13
所以
sin(π/4-α)=-4/5 ,cos(3π/4+β)=-12/13
而
π/4 <α+β=(3π/4+β)-(π/4-α)-π/2<π/2
所以
sin(α+β)
=sin{(3π/4+β)-(π/4-α)-π/2}
=-sin{π/2-[(3π/4+β)-(π/4-α)]}
=-cos[(3π/4+β)-(π/4-α)]
=-cos(3π/4+β)cos(π/4-α)-sin(3π/4+β)sin(π/4-α)
=-(-12/13)*(3/5)-(5/13)*(-4/5)
=56/65
(4) cosx=-12/13 x∈(π,2π)
则2π-x∈(0,π)
cosx=cos(-x)=cos(2π-x)
则cos(2π-x)=-12/13
所以2π-x=arccos(-12/13)
=π-arccos(12/13)
x=arccos(12/13)+π
版权及免责声明
1、欢迎转载本网原创文章,转载敬请注明出处:侨谊留学(www.goesnet.org);
2、本网转载媒体稿件旨在传播更多有益信息,并不代表同意该观点,本网不承担稿件侵权行为的连带责任;
3、在本网博客/论坛发表言论者,文责自负。