首页 > 留学知识库

问题: 在三角形ABC中 A:B:C=1:2:4 求证c^-a^=bc 急HURRY

解答:

证:△ABC中A:B:C=1:2:4,由A+B+C=pi解方程组得到
A=pi/7,B=pi/7,C=pi/7.
c^2-a^2=4R^2[(sinC)^2-(sinA)^2] 半角公式
=4R^2[(1-cos2C)/2-(1-cos2A)/2]
=4R^2[(cos2A-cos2C)/2] 和差化积
=4R^2*[-sin(A+C)sin(C-A)]
=4R^2*[-sinBsin(3pi/7)], [sin(3pi/7)=sin(pi-4pi/7)=-sin4pi/7]
=4R^2*sinBsin(4pi/7)
=4R^2*sinBsinC
=(2RsinB)(2RsinC)
=bc.证完