问题: 方程
过点P(2,3)引圆x^2+Y^2-2x+4y+4=0的切线,其方程为
解答:
圆x^2+Y^2-2x+4y+4=0的标准方程为
(x-1)^2+(y+2)^2=1,圆心(1,-2),半径1
设过点P(2,3)的切线L的斜率为k,方程为:
y-3=k(x-2),即kx-y+3-2k=0,圆心(1,-2)到切线的距离=半径1:
|k+2+3-2k|/√(k^2+1)=1,|5-k|/√(k^2+1)=1→
(5-k)^2=(k^2+1),→25-10k+k^2=k^2+1,→k=2.4=12/5
∴切线方程为:y-3=(12/5)(x-2),即
12x-5y-9=0,另外,x=2也是一条切线的方程(此时斜率不存在)
版权及免责声明
1、欢迎转载本网原创文章,转载敬请注明出处:侨谊留学(www.goesnet.org);
2、本网转载媒体稿件旨在传播更多有益信息,并不代表同意该观点,本网不承担稿件侵权行为的连带责任;
3、在本网博客/论坛发表言论者,文责自负。