问题: 急急急!谁能解决这题高中数学题!
假设 A+B+C+D = 0
请证明 (ABC+BCD+CDA+DAB)^2 = (BC-AD)(CA-BD)(AB-CD)
有点难,不过希望大家能帮忙小弟!
解答:
ABC+BCD+CDA+DAB = AB(C+D)+CD(A+B)=AB(C+D)-CD(C+D)=(AB-CD)(C+D)....(1)
ABC+BCD+CDA+DAB = AC(B+D)+BD(A+C)=AC(B+D)-BD(B+D)=(AC-BD)(B+D)....(2)
(1)*(2):
(ABC+BCD+CDA+DAB)^2 = (AB-CD)(C+D)(AC-BD)(B+D)
= (AB-CD)(AC-BD)(BC+BD+CD+D^2)
= (AB-CD)(AC-BD)[BC+BD+D(C+D)]
= (AB-CD)(AC-BD)(BC+BD-D(A+B)]
= (AB-CD)(AC-BD)(BC-DA)
证毕
版权及免责声明
1、欢迎转载本网原创文章,转载敬请注明出处:侨谊留学(www.goesnet.org);
2、本网转载媒体稿件旨在传播更多有益信息,并不代表同意该观点,本网不承担稿件侵权行为的连带责任;
3、在本网博客/论坛发表言论者,文责自负。