问题: 已知函数f(x)=2cos(x+π/6)(√3sinx+cosx)
1)求函数f(x)的最小正周期
2)若x∈[0,π/2],求函数f(x)的值域
3)求满足f(x)≥1时x的取值范围
解答:
f(x)=2cos(x+π/6)(√3sinx+cosx)
f(x)=2cos(x+π/6)*2(√3/2six+1/2cosx)
f(x)=4cos(x+π/6)*sin(x+π/6)
f(x)=2sin(2x+π/3)
1)函数f(x)的最小正周期T=2π/2=π
2)若x∈[0,π/2],→π/3≤2x+π/3≤4π/3
√3≤f(x)=2sin(2x+π/3)≤2
函数f(x)的值域 [√3,2]
3)求满足f(x)≥1时x的取值范围
2sin(2x+π/3)≥1,→sin(2x+π/3)≥1/2,
π/6+2kπ≤(2x+π/3)≤5π/6+2kπ→
-π/6+2kπ≤2x≤π/2+2kπ→
-π/12+kπ≤x≤π/4+kπ(k∈Z)
版权及免责声明
1、欢迎转载本网原创文章,转载敬请注明出处:侨谊留学(www.goesnet.org);
2、本网转载媒体稿件旨在传播更多有益信息,并不代表同意该观点,本网不承担稿件侵权行为的连带责任;
3、在本网博客/论坛发表言论者,文责自负。